
Faculty of Computer Science / Institute of Systems Architecture / Operating Systems

SYSTEMS PROGRAMMING
C++ INTRODUCTION

Alexander Warg

System Programming
C++ Introduction

WHY C++ ?

• C++ is the language that allows to express ideas
from the systems-programming area most
direcly

• C++ is widely used in engineering areas
• C++ is available on almost any computer

System Programming
C++ Introduction

WHAT (NOT) TO EXPECT

• Explanation of C++ constructs for real
understanding: C++ is not magic

• Try to not to explain any obscure detail

NOT
• C++ standard library APIs
• ...

System Programming
C++ Introduction

OUTLINE

C / C++ TYPE SYSTEM

POINTERS AND REFERENCES

ARRAYS AND POINTER ARITHMETIC

BUILDING A LINKED LIST

INHERITANCE AND TYPE CONVERSION

System Programming
C++ Introduction

OBJECTS, TYPES, AND VALUES

int x = 10;
<type> <name> <initializer value>

GENERALLY
The type of an object determines which operations
are allowed and their semantics

– x + y (Complex vs int)
– f(x) etc.

System Programming
C++ Introduction

TYPES

BUILT-IN TYPES
bool boolean type (true, false)
char character type ('a', '4'...)
short, int, long, (long long)
 signed integer types (0, 1, 2, -5 ...)
unsigned char .. unsigned long long
 unsigned interger types (0, 1, 2 ...)
float, double
 floating-point numbers (1.2, 3.4, 1.2e3 ...)

USER-DEFINED TYPES
 follow soon

System Programming
C++ Introduction

OBJECTS

• Some memory that can hold a value of a given type
• A variable is a named object
• A declaration names an object

int a = 7;
char c = 'x';
std::complex<double> z(1.0,2.0);

7

'x'

1.0 2.0

a:

c:

z:

System Programming
C++ Introduction

COMPOUND TYPES

ARRAYS int x[10]

FUNCTIONS void func(int p1, double z)

POINTERS int *ptr

REFERENCES int &ref = x; // alias for x

CLASSES, STRUCTS

UNIONS

ENUMERATIONS

POINTERS TO NON-STATIC MEMBERS

System Programming
C++ Introduction

USER-DEFINED TYPES

struct, class
– compound data type aggregating one or multiple

instances of other data types
– struct essentially is the same as a class
– operations (methods, operators) for the type

enum
– enumeration type with user-define constant values

union
– can contain different types at different times

System Programming
C++ Introduction

CLASS, STRUCT, BITFIELD

PRACTICAL EXERCISE
• members
• visibility

– public visible for all (default for struct)
– private only inside the class (default for

class)
– protected inside the class and derived classes

System Programming
C++ Introduction

TYPEDEF vs USER-DEFINED TYPES

PRACTICAL EXERCISE
• class S { int val; }; vs typedef int S;
• typedef struct Thing { ... } Thing;

– this is C not C++, however is allowed for
compatibility

– struct Thing already defines the type Thing

System Programming
C++ Introduction

POINTERS / REFERENCES

char c = 'u';
char *p = &c; // pointer to the object c
char &r = c; // reference to object c (alias)

• pointers can be 'Null': p = 0
• references are always valid (technically

comparable to a pointer)

'u'c:

r:

p:

System Programming
C++ Introduction

ARRAYS & POINTER (ARITHMETIC)

int a[100] = { 0, 10, 8, ... };

int *p = a; // pointer can point to an array-element

p = p + 1; // what happens here ?

char c[100];
char *cp = c;
cp++;

0

10

8

???

...

[0]
[1]
[2]

[99]

a:

p:

System Programming
C++ Introduction

TYPE QUALIFIERS

const int const x = 10;
– makes an object immutable

volatile int volatile x;
– defines x to have side effects or to be modified

externally (asynchronously)

Examples...

System Programming
C++ Introduction

STORAGE, SCOPE, LIFE CYCLE

int x; // global variable, created at program start,
 // destroyed at program exit
void func()
{
 int x; // local variable, created here,
 // destroyed on function return
}

static int x; // global storage, locally visible in this compilation unit

void func1()
{
 static int x; // global storage, visible in this function
}

System Programming
C++ Introduction

... STORAGE, SCOPE, LIFE CYCLE

class Data
{
 int x; // object scope (life cycle of the respective
 // Data object)
 int get_x() const // object scope function (method)
 { return x; }

 static int z; // class scope (global storage, global life cycle)
 static int get_z() // class scope function
 { return z; }
};

// NOTE: define static class data at global scope
// this must usually not be in a header file!
int Data::z;

System Programming
C++ Introduction

HEAP STORAGE

// allocate object on dynamic heap
Data *d = new Data;

// destroy object explicitly (no garbage collection!)
delete d;

usually new must not return NULL, so no check
needed

System Programming
C++ Introduction

FUNCTIONS

int func(long x); // declaration

int func(long x) // definition
{
 return 5 * x / 23;
}

int func(long x, long y) // different function (overloading)
{
 return x * y;
}

char func(long x, long y); // error ?

System Programming
C++ Introduction

CALL BY VALUE / REFERENCE

void func1(int p) // call by value (the default)
{ p = p + 1; }

struct Data { int x; int y; }

void func2(Data data) // call by value
{ data.x = 10; }

void func3(Data &data) // call by reference
{ data.x = 10; }

void func4(Data const &data) // call by const reference
{ data.x = 20; }

void func5(Data *data) // call by reference/pointer
{ data->x = 23; }

ONLY USE NON-CONST REFERENCES WHEN REALLY NEEDED

System Programming
C++ Introduction

SPECIAL FUNCTIONS

CONSTRUCTORS
– Initialize an object
– Same name as class, no return type

DESTRUCTORS
– Free resources of an object
– Name: ~<class name>(), no return type, no

parameters

OPERATORS
– Most operators in C++ can be overloaded (+, - ...)
– Will be explained eventually

System Programming
C++ Introduction

EXERCISE: LINKED LISTS

Implement a linked list of complex numbers with the following
functions:

- insert given element at head
- insert given element at tail
- remove given element
- set / get complex value of given element
- search element whose value is the given complex number (if
present)
- sum up all complex numbers in the list
(a specific form of the generic algebraic folding function over lists

Which data structure is appropriate for a list with the above
operations?

EXERCISE: LINKED LISTS

1) single-linked list

2) single-linked list with head
element

3) double-linked list

4) double-linked list cyclic

5) double-linked list cyclic with
head element

H

H

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

